
Computation
Chapter 4

Computation

All a program ever does is take some input and
produces output.
The input can come from a keyboard, mouse,
touch screen, files, other input devices, other
programs and other parts of the program
To deal with data a program contains some sort
of data structure or state.

Output

Just as input can come from all over, output
can go to various locations.
Screen, files, other output devices, other
programs and other parts of the same program.
Inputs to a part of a program are called
arguments and output is called results.

Computation definition

By computation we simply mean the act of
producing some outputs based on some inputs.
For example producing the result 49 from the
input 7 using the computation square.
Side note, before the 50’s a computer was
defined to be a person who did computations,
such as an accountant, a navigator, or a
physicist.

Objectives and tools

Our job as programmers is to express
computations:
1. correctly
2. simply
3. efficiently
The order is important.
It doesn’t matter how fast something is if it’s
wrong.

Quality code

Concerns for structure and “quality of code” are
often the fastest way of getting something to
work correctly.
When done well, the need to debug is
minimized.
Good program structure during development
can minimize the number of mistakes made
and the time needed to search for and fix
errors.

Main tools

The main tools for organizing a program are
1. Abstraction
2. Divide and conquer

Abstraction

Abstraction: is to hide details that we don’t
need to use a facility behind a convenient and
general interface.
We don’t have to know how cin works with >>
in order to use it, we simply need to know that it
will work.
Divide and conquer: is to break larger problems
down into several little ones.

But why?

A program built out of parts will be larger than
one that is written in one part.
We simply cannot write and maintain large
monolithic programs.
You don’t get good code from simply writing a
lot of statements.

Expressions

The most basic building block of programs is an
expression.
C++ will evaluate expression starting at the top
of the file and continue to the bottom.
The simplest of expressions are literal values:
10, ‘a’, 3.14, “Norah”
Names of variables are also expressions:
int length = 20;
int width = 40;
int area = length * width;

More complicated examples

We can combine expressions using operators
and if needed grouping them with parenthesis.
int perimeter = (length+width)*2;
or
int perimeter = length*2+width*2;

The basic precedence rules you know from
math apply here.
Use parenthesis to help group terms.

A note about readability

Why should you care about readability.
You will most likely be reading your code.
Others maybe reading your code, e.g. me.
Ugly code is not only hard to read, it is also
much harder to get correct.
Ugly code often hides logical errors.

Constant expressions

A constant expression is one that cannot be
changed.
const double pi = 3.14159;
pi = 7; //error
double c = 2 * pi; //looks good

Non-obvious literals in code are called magic
constants and should be avoided.

Operators

The operators were discussed in chapter 3 and
are more or less what you expect.
+, -, *, /
Note that a < b < c does not do what you might
expected.
a < b is a boolean value so you need to join
that with && (logical and) or || (logical or)
a < b && b < c

Conversions

We can mix our integers and doubles in our
expressions.
But what will C++ do?
Basically, if C++ “sees” a double on the right
hand side of an expression, it will convert all
other integers to doubles to do the calculation.
If everything is an integer, then integer math is
used.
If everything is a double, then floating point
math is used.

But what about the left hand side

So if we have
int x = 7 * 9;
we get the int result 63.
int x = 7.0 * 9.0;
The right hand side will compute the result 63.0
then it will look at the type on the left hand side.
It will truncate the result and store 63 in x.
Better
int x = int(7.0) * int(9.0);

Statements

An expression computes a value from a set of
operands using operators.
What do we do when we want to produce
several results, repeat an expression or choose
among alternatives?
We use a statement.
A statement is just a language construct to
allow us to structure our program.

Kinds of statements

So far we have seen expression statements
and declaration statements.
An expression is simply a statement followed
by a semicolon.
a = b;
++b;
What is a = b ++ b; //a syntax error
Do we mean a = b++; b; or a = b; ++b;
Semicolons end our statements.

Empty statement

There is a statement that does nothing, the
empty statement.
;
if (x == 5) ;
{ y = 3; }
This is probably not what we mean, but it will
compile and run.
It is a very common error.

Selection statements

When we have to choose among a set of
alternatives, we have two choices:
1. if statement
2. switch statement

if statements

The simplest form of a selection is an if-
statement which selects between two
alternatives.
if (a< b)

cout << “max(” << a << “,” << b << “) is ” <<
b << “\n”;
else

cout << “max(” << a << “,” << b << “) is ” <<
a << “\n”;

if-statements again

An if-statement chooses between two
alternatives.
If its condition is true, the first statement is
executed; otherwise the second statement is.

Sample
int main()
{

const double cm_per_inch = 2.54;
double length = 1;
char unit = 0;
cout << “Please enter a length followed by a unit (c or

i):\n”;
cin >> length >> unit;
if (unit == ‘i’)

cout << length << “in == ” << cm_per_inch * length
<< “cm\n”;

else
cout << length << “cm == ” << length / cm_per_inch

<< “in\n”;
return 0;

}

How good was that?

What was left out?

Better
int main()
{

const double cm_per_inch = 2.54;
double length = 1;
char unit = 0;
cout << “Please enter a length followed by a unit (c or

i):\n”;
cin >> length >> unit;
if (unit == ‘i’)

cout << length << “in == ” << cm_per_inch * length
<< “cm\n”;

else if (unit == ‘c’)
cout << length << “cm == ” << length / cm_per_inch

<< “in\n”;
else

cout << “Sorry, I don’t know a unit called ” << unit
<< “\n”;

return 0;
}

Details

if (expression) statement else statement

The pattern is,
the keyword if,
followed by an expression in parenthesis,
followed by a statement,
followed by an else,
followed by a statement.

if-else if-else...

We can build complex set of if-else statements.
The second else can be followed by another if-
else statement.

switch-statements

The switch-statement is an alternative to the if-
statements
There are some technicalities
1. The value on which we switch must be of an integer,
char, or enum type.
2. The values of the case labels must be constant
expressions.
3. You cannot use the same value for two case labels.
4. You can use several case labels for a single case.
5. Don’t forget to end each case with a break.

int main()

{
const double cm_per_inch = 2.54;
double length = 1;
char unit = 0;
cout << “Please enter a length followed by a unit (c or i):\n”;
cin >> length >> unit;

switch (unit){

case ‘i’:
cout << length << “in == ” << cm_per_inch * length <<

“cm\n”;

break;

case ‘c’:
cout << length << “cm == ” << length / cm_per_inch <<

“in\n”;

break;

default:

cout << “Sorry, I don’t know a unit called ” << unit <<
“\n”;

break;

}

}

Missing the break

If you leave off the break statements the
compiler will accept it.
The matching case, will “drop” through to the
next case, causing both cases to execute.

Iteration - the while-statements

int main()
{

int i=0;
while (i<100)
{

cout << i << ‘\t’ << square(i) << ‘\n’;
++i;

}
}

What we need for loops

1. A way to repeat some statements (to loop)
2. A variable to keep track of how many times
we have been through the loop (a loop variable
or a control variable), here the int called i.
3. An initializer for the loop, here 0;
4. A termination criterion, here, that we want to
go through the loop 100 times.
5. Something to do each time the loop (the
body of the loop)

Blocks

Note how we grouped the two statements the
while had to execute.
A sequence of statements delimited by curly
braces, { and }, is called a block.
A block is a special kind of statement.
The empty block is sometimes useful for
expressing that nothing is to be done.
if (a <= b) { }
else {

int t = a; a = b; b = t; }

for-statements

Iterating over a sequence of numbers is very
common in C++.
A for-statements is purpose built for this
problem.
The difference is the management of the
control variable is done at the top.
for (int i=0; i<100; i++)

cout << i << ‘\t’ << square(i) << ‘\n’;
A for-statement is always equivalent to a while-
statement.

Functions

In the previous example, what was square(i)?
It’s a call of a function.
A function is a named sequence of statements.
A function can return a result (also called a
return value).
We don’t have to use the result of a function
call but we do have to give a function exactly
the arguments it requires.

Example

square(2); //probably an error, unused return
int v1 = square(); //error missing argument
int v2 = square; //error, parenthesis missing
int v3 = square(1,2); //error too many
arguments
int v4 = square(“two”); //error wrong type

Function body

The function body is the block that actually
does the work.

{
return x*x;

}

Function definition syntax

type identifier (parameter-list) function-body
The type is the return type.
The identifier is the function’s name.
The parameter-list is a list of arguments
separated by commas. The list can be empty.
The function-body is the block of statements to
be executed.
If the function does not return a value, then void
is used as the return.

Example

void write_sorry()
{

cout << “Sorry\n”;
}
int square(int x)
{

return x*x;
}

But why?

Writing functions:
1. makes the computations logically separate.
2. makes the program text clearer (by naming

the computation).
3. makes it possible to use the function in more

than one place in our program.
4. eases testing.
Programs are usually easier to write and to
understand if each function performs a single
logical action.

Function declarations

In order call a function, all we need to do is this:

int x = square(44);

So all we need is the first line: int square(int x
);

Most programs don’t want to look at a function
body.
The first line with a semicolon is called the
function declaration.

